The collision avoidance capability of autonomous vehicles in extreme traffic conditions remains a focal point of research. This paper introduces an Adaptive Cruise Control (ACC) strategy based on Model Predictive Control (MPC) and Responsibility-Sensitive Safety (RSS) models. Simulations were conducted in the CARLA environment, where the lead vehicle underwent various rapid deceleration scenarios to optimize the following vehicle’s braking strategy. By integrating the multi-step predictive optimization capabilities of MPC with the dynamic safety assessment mechanisms of RSS, the proposed strategy ensures safe following distances while achieving rapid and precise speed adjustments, thereby enhancing the system’s responsiveness and safety. The model also incorporates a secondary optimization to balance comfort and stability, thereby improving the overall performance of autonomous vehicles. The use of multi-dimensional assessment metrics, such as Time to Collision (TTC), Time Exposed TTC (TET), and Time Integrated TTC (TIT), addresses the limitations of using TTC alone, which only reflects instantaneous collision risk. The optimization of the model in this paper aims to improve the safety and comfort of the following vehicle in scenarios with various gap distances, and it has been validated through the SSM multi-indicator approach. Experimental results demonstrate that the improved ACC model significantly enhances vehicle safety and comfort in scenarios involving large gaps and short-distance emergency braking by the lead vehicle, validating the method’s effectiveness in various extreme traffic scenarios.
Loading....